Question	Answer	Mark
Number		
1(a)(i)	Use of $F \cos 42^\circ$ or $F \sin 48^\circ$ (1)	
	Horizontal component = $480 (N)$ (1)	2
	Example of calculation	
	Horizontal component = $650 \text{ N} \text{ x} \cos 42^{\circ}$	
	= 483 (N)	
1(a)(ii)	Use of $\Delta W = F \Delta s$ (1)	
	Work = 51 000 J (1)	2
	Example of calculation	
	$Work = 483 N \times 15 \times 7 m$	
	= 50 715 J	
1(b)	Force in the direction of motion	
	Or	
	Force is parallel to the direction of motion	
	Or	
	Force is applied in a horizontal direction	
	Or	
	There is no vertical component of force (1)	
	So less applied force (1)	2
	Total for question	6

Question	Answer		Mark
Number			
2 (a)	Wind exerts a force/push(on the blades)	(1)	
	blades move (through a distance in the direction of the force)	(1)	
	Or		
	Energy is transferred	(1)	
	From kinetic energy of wind to (KE of) the blades	(1)	2
2 (b)(i)	Use of volume = area x length	(1)	
	Volume = $270\ 000\ (m^3)$	(1)	2
	Example of calculation		
	Volume per second = $6\ 000\ \text{m}^2 \times 9\ \text{m} = 54\ 000\ \text{m}^3$		
• / / / / /	Total volume in 5 seconds = 54 000 $\text{m}^3 \times 5 \text{ s} = 270 000 (\text{m}^3)$	(4)	
2 (b(ii)	Use of mass = density x volume	(1)	
	$Mass = 324\ 000\ kg\ (ecf)$	(1)	2
	Example of calculation $M_{\text{example}} = 1.2 \log 10^{-3} \approx 270,000 \text{ m}^3 = 224,000 \log 10^{-3}$		
2 /h)/iii)	$\frac{1}{Mass} = 1.2 \text{ kg m}^{-3} \times 270\ 000 \text{ m}^{3} = 324\ 000 \text{ kg}$	(1)	
2 (b)(iii)	Use of $E_k = 1/2 mv^2$ $E_k = 1.3 \times 10^7 \text{ J (ecf)}$	(1)	2
	$E_k = 1.5 \times 10^{-3} J (ecl)$	(1)	2
	Example of calculation		
	$E_{\rm k} = \frac{1}{2} \times 324\ 000\ \rm{kg} \times (9\ \rm{m\ s}^{-1})^2 = 13\ 122\ 000\ \rm{J}$		
2(b)(iv)	Use of either		
-(-/(/	Energy from wind over 5 second period = 59 % x E_k		
	Or		
	KE divided by 5(s)	(1)	
	Power = 1.5 MW	(1)	2
	[Range of correct answers 1.5 MW to 1.8MW]		
	Example of calculation		
	Energy from the wind in 5 seconds = $0.59 \times 13\ 100\ 000\ J = 7\ 741\ 980\ J$		
2 (c)	Power = energy/second = 7 741 980 J/5 s = 1.548 MW		
2 (c)	Would need to stop wind entirely/Wind or air still moving/Wind or air still has KE/Not all the air hits the blades	(1)	1
2 (d)	Max 2	(1)	1
Z (u)			
	• Wind doesn't always blow/if there is no wind they don't work/ wind speeds		
	• Wind doesn't always blow/if there is no wind they don't work/ wind speeds are variable/ need minimum amount of wind to generate the electricity/need		
	are variable/ need minimum amount of wind to generate the electricity/need	(1)	
	are variable/ need minimum amount of wind to generate the electricity/need a large amount of wind/can't be used in very high winds	(1) (1)	
	are variable/ need minimum amount of wind to generate the electricity/need	(1) (1) (1)	2

Question Number	Answer	Mark
3 (a)	Show that the work done by the horse in turning the wheel once was about 20 000 J. Use of distance = $2 \pi r$ (1) Use of work = force x distance (1) Correct answer (19 000 (J) to at least 2 sf) (1) [no ue] (If force x 3.7 m used, allow second mark only) (If force x distance for 144 turns used, allow 1 st and 2 nd marks)	(3)
3 (b)	Example of calculation $x = 2 \ge \pi \ge 3.7 \ \text{m} = 23.2 \ \text{m}$ $W = F\Delta x$ $= 800 \ \text{N} \ge 23.2 \ \text{m}$ $= 18 \ 600 \ \text{J}$ ('Reverse show that' starting from 20 000 \mathcal{J} - \text{max} 2) Calculate the average power of the horse Recall power is rate at which work is done (accept formula or substituted values) (1) Substitute for 144 turns (1) Correct answer (740 W) (1) If using P = Fv: Recall P = Fv (1) Use of v = s/t for 144 turns (1) Correct answer (1)	(3)
	Example of calculation Power = work done / time = 144 x 18 600 J / 60 x 60 s = 744 W (accept any dimensionally correct unit – ignore later units if W used as well) (use of 20 000 J gives 800 W)	
	Total for question	6

Question Number	Answer	Mark
4(a) 4(b)	Calculate maximum energy Use of $gpe = mgh$ (1) Correct answer (0.28 J) (1) <i>Example of calculation</i> gpe = mgh = 0.41 kg x 9.81 N kg ⁻¹ x 0.07 m = 0.28 J [N.B. Bald answer gets 2, but no marks if derived from use of $v^2 = u^2 + 2as$] Resolve this velocity into horizontal and vertical components. Shows a correct, relevant trigonometrical relationship (1) Correct answer for horizontal component (12 m s ⁻¹) (1) Correct answer for vertical component (10 m s ⁻¹) (1) (max 1 mark total for reversed answers) (apply ue once only) <i>Example of calculation</i> $v_h = v \cos\theta$ = 16 m s ⁻¹ x cos 40° = 12.3 m s ⁻¹ $v_v = v \sin\theta$ = 16 m s ⁻¹ x sin 40° = 10.3 m s ⁻¹	(2) (3)
4(c)	 Explain another reason why the projectile does not go as far as expected. (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) Max 2 out of three marking points for: A physical cause – e.g. other parts of the machine are moving/the sling stretches/headwind/fired up a slope/the projectile increases in height before release (1) Description of energy elsewhere than the projectile – e.g. elastic energy in sling/moving parts have ke / projectile has gained gpe before launch [Must refer to energy] (1) Stating that less energy has been transferred to the projectile/projectile has a lower speed (1) 	(max 2)
Dhuning	Total for question AndMathsTutor.com	7

Question	Answer	Mark
Number		
5 (a)	Calculate the resistive forces	
	State component of $T = T \cos \theta(1)$	
	Correct answer [1120 N] (1)	2
		2
	Example of calculation	
	$T = T \cos \theta$	
	= 1150 N x cos 12°	
	= 1125 N	
	Therefore resistive forces = 1125 N	
5(b)	Calculate the work done on the boat by the horse	
	Use of $\Delta W = F \Delta s$ (1)	
	Correct answer [558 000 J] (1) [ecf]	2
	Example of calculation	
	$\Delta W = F \Delta s$	
	= 1125 N x 500 m	
= ()	=560 000 J	
5 (c)	Explain using a longer rope	
	Longer rope → smaller angle (1)	
	cos theta then larger / need smaller force (for same component	
	acting on boat) (1)	2
	Total for question	6

Question			Mark
Number			
6(a) (i)	Use of equation of motion suitable for a, e.g. $v = u + at$	(1)	
	$a = 16.3 \text{ m s}^{-2}$ (2.1 ×10 ⁵ km h ⁻² or 58.7 km h ⁻¹ s ⁻¹)	(1)	2
	Example of calculation a = 2.3 s $a = 16.3 \text{ m s}^{-2}$		
6(a) (ii)	$\frac{a - 10.5 \text{ ms}}{\text{Use of } E_{\text{k}} = \frac{1}{2} mv^2}$	(1)	
$\mathbf{U}(\mathbf{a})$ (II)	Use of $P = E/t$	(1) (1)	
	Power = 3.1×10^6 W	(1)	
	Or		
	Use of $F = ma$ (must be <i>a</i> from (i)) and Use of equation to find distance and use of work done = Fd	(1)	
	Use of $P = E/t$	(1)	
	$Power = 3.1 \times 10^6 W$	(1)	3
	(distance = 43 m)		
	$\frac{\text{Examples of calculations}}{E_{k} = \frac{1}{2} \times 10\ 000\ \text{kg} \times (37.5\ \text{m s}^{-1})^{2} = 7.03 \times 10^{6}\ \text{J}$ Power = 7.03 × 10 ⁶ J / 2.3 s = 3.1 × 10 ⁶ W		
6(a) (iii)	Energy transferred by heating Or energy transferred due to friction Or work done against friction Or idea that more energy required (due to energy transfer) due to friction.	(1)	1
	(do not accept 'lost' but accept air resistance as an alternative to friction)		
*6(b	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	larger force is needed Or the (same) force is insufficient need same acceleration/ (max) velocity OR acceleration/(max)	(1)	
	velocity is too small more energy needed (to reach top) Or insufficient energy (to reach	(1) (1)	3
6 (c)	top) Viscosity of oil decreases (with increasing temperature) Or the (warm) oil is less viscous	(1)	
	(accept a reverse argument e.g. when cold oil is more viscous)		
	Lower frictional/resistive force Or less viscous drag	(1)	2
	Total for question		11

Question Number	Answer		Mark
7(a)	Static domino now has an unbalanced force acting on it so starts to move/fall Or falls from rest Or accelerates	(1) (1)	
	Or Before it is hit, the static domino has no unbalanced force on it (so) remains at rest	(1) (1)	2
*7(b)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	The bottom coin is knocked out from under the stack Only the bottom coin is given a force Or bottom coin has an unbalanced force on it Bottom coin starts to move Or accelerates	(1) (1)	
	<u>The flicked coin stops</u> Stacked/bottom coin gives the flicked coin a force Or force on flicked coin due to N3. The resultant force on the flicked coin is opposite to the direction of motion Or the flicked coin decelerates	(1) (1)	
	<u>The stack drops down</u> The remaining stacked coins do not receive any horizontal force (so stay still horizontally) The stacked coins now have an unbalanced vertical force (and drop) Or there is now only weight acting (vertically)	(1) (1)	6
7(c)	The idea that the direction of the (force of the flicked) coin on the stack is in a different direction (to initial direction of travel)	(1)	
	The idea that the force from stack on (flicked) coin is in a different direction (to initial direction of travel) (Accept a labelled diagram indicating an off-centre collision)	(1)	2
	Total for question		10